If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14r+15=2r^2
We move all terms to the left:
14r+15-(2r^2)=0
determiningTheFunctionDomain -2r^2+14r+15=0
a = -2; b = 14; c = +15;
Δ = b2-4ac
Δ = 142-4·(-2)·15
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{79}}{2*-2}=\frac{-14-2\sqrt{79}}{-4} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{79}}{2*-2}=\frac{-14+2\sqrt{79}}{-4} $
| 4x^2-33x+16=0 | | 3x+(-3)=9 | | 3/4x-1/3(2x-7)=3-7/12x | | M-21.5=b+3.9 | | 4x+2=1/24x+44 | | (6x+90)+(5x+35)=180 | | 3x-5=-7x+8 | | 2(x-3)=4x-1 | | -4=-3+p7 | | 1.25x+17=4.5+27 | | -4=-3+p~7 | | X^2+11x=31 | | R(12)=2x | | 3(2x–5)–2(4x+1)=–5(x+3)–2 | | 4/5(m-1-1/5m=1 | | R(4)=2x | | x+x+3=140 | | 2x^2-50=75x-3x^2 | | F(x)=10×+2 | | 2x^2-50=75-3x^2 | | 3(2x-1)=10x+4 | | -1-x-3=3 | | -1-x|3=3 | | (x/4)-4=x-19 | | 6/5=x/10 | | -11+x+(-45)=25 | | 3x^2+20=7 | | 3/4x-5/8=23/24x-5 | | 39+16m=183 | | 39=16m=183 | | 8-6x=5x+7 | | 25n-78=247 |